
Classification of Packed Executables for

Accurate Computer Virus Detection

Roberto Perdisci a,∗, Andrea Lanzi c,b, Wenke Lee b,a

aDamballa, Inc., Atlanta, GA 30308,USA

bGeorgia Tech Information Security Center, Georgia Institute of Technology,

Atlanta, GA 30332, USA

cDipartimento di Informatica e Comunicazione, Universitá degli Studi di Milano,

Milano, Italy

Abstract

Executable packing is the most common technique used by computer virus writers
to obfuscate malicious code and evade detection by anti-virus software. Universal
unpackers have been proposed that can detect and extract encrypted code from
packed executables, therefore potentially revealing hidden viruses that can then be
detected by traditional signature-based anti-virus software. However, universal un-
packers are computationally expensive and scanning large collections of executables
looking for virus infections may take several hours or even days.

In this paper we apply pattern recognition techniques for fast detection of packed
executables. The objective is to efficiently and accurately distinguish between packed

and non-packed executables, so that only executables detected as packed will be sent
to an universal unpacker, thus saving a significant amount of processing time. We
show that our system achieves very high detection accuracy of packed executables
with a low average processing time.

Key words: Computer Security, Pattern Recognition, Packed Executables,
Computer Virus Detection.

∗ Corresponding author.
Email addresses: roberto.perdisci@gmail.com (Roberto Perdisci),

andrew@idea.sec.dico.unimi.it (Andrea Lanzi), wenke@cc.gatech.edu
(Wenke Lee).

Preprint submitted to Elsevier 16 June 2008



1 Introduction

As a consequence of the arms race between virus writers and anti-virus ven-
dors, sophisticated code obfuscation techniques are commonly implemented
in computer viruses. Executable code polymorphism, metamorphism, pack-
ing, and encryption, have been proven very effective in evading detection by
traditional signature-based anti-virus software. Among these techniques, exe-
cutable packing is the most common due to the availability of several open-
source and commercial executable packers [15]. An executable packing tool (or
packer, for simplicity) is a software that given a program P generates a new
program P

′ which embeds an encrypted version of P and a decryption routine.
When P

′ is executed, it will decrypt P on the fly and then run it. Assuming
P contains known malicious code, signature based anti-virus would (likely)
be able to detect it. However, if P has been packed the anti-virus will try to
match the signature of P on P

′. As the malicious code of P is encrypted in
P

′, no match will be found. Therefore, P will evade detection and infect the
victim machine, if P

′ is executed.

According to [8, 10], over 80% of computer viruses appear to be using packing
techniques. Moreover, there is evidence that more than 50% of new viruses are
simply re-packed versions of existing ones [15]. Although executable packing
is very popular among virus writers, it is also applied for encrypting benign
executables. Programmers of benign software apply packing to their applica-
tions mainly to make the resulting executables smaller in terms of bytes, and
therefore faster to distribute through the network, for example. Also, packing
makes reverse-engineering more difficult, thus making it harder for hackers to
break the software license protections. As a matter of fact, there exist many
commercial executable packing tools that have been developed mainly for pro-
tecting benign applications from software piracy. However, the percentage of
packed benign executables is low (perhaps as low as 1%, although we were not
able to find any study that can confirm this estimate, which is based solely on
our experience).

Universal unpackers [14, 6] are able to detect and extract (part of) P from P
′

without specific knowledge about the encryption algorithm used to generate
P

′. The code of P is dynamically extracted by running P
′ in an isolated envi-

ronment and monitoring the execution of instructions written in memory at
run-time. After P has been extracted, its code can be scanned using traditional
anti-virus software. It has been shown that scanning the unpacked code using
signature-based anti-virus software significantly improves virus detection ac-
curacy [14, 9]. However, universal unpackers introduce a high computational
overhead, and the processing time may vary from tens of seconds to several
minutes per executable. For example, the average time it takes to unpack a
packed virus using the Renovo [6] unpacker is around 40 seconds. This greatly

2



hinders virus detection, since without a priori knowledge on the nature of
the executables to be checked for malicious code all of them would need to
be run through the unpacker. As a consequence, scanning large collections of
executables looking for virus infections may take several hours or even days.

Pattern recognition techniques have recently been proven effective in solving
problems of interest in the computer security field (see [7, 16, 11], for ex-
ample). For this reason, researchers in both the pattern recognition and the
computer security community are gaining interest in such kind of promising
applications. In this paper we present an application of pattern recognition
techniques for fast detection of packed executables. The objective is to accu-
rately distinguish between packed and non-packed executables, so that only
the executables detected as packed will be sent to a computationally expensive
universal unpacker for hidden code extraction, before being sent to the anti-
virus software. Therefore, our classification system helps in improving virus
detection while saving a significant amount of processing time. In this paper
we do not focus on the improvements in virus detection accuracy achieved
after unpacking, because this has already been studied in [14, 9], for example.
Instead, we focus on the accuracy and computational cost related to the clas-
sification of packed executables into the two classes packed and non-packed.

Signature-based detectors of packed executables are available on the internet.
For example, PEiD (http://peid.has.it) is very well known and very likely
the most used. However, although signature-based detectors are fast and have
relatively low false positives, they suffer from a high number of false negatives.
This is mainly due to the fact that executable packing tools can be easily mod-
ified by virus writers to avoid signature-based detection [15] 1 . On the other
hand, we will show that our classification approach has a much better gen-
eralization ability than signature-based approaches and is able to distinguish
between packed and non-packed executables with very low false positive and
false negative rates.

We consider programs in Portable Executable (PE) format, which is the for-
mat used in 32-bit and 64-bit Microsoft Windows operating systems. In order
to classify an executable program, we use binary static analysis to extract
information such as, for example, the name of the code and data sections,
the number of writable-executable sections, the code and data entropy, etc.
(see Section 3). This information allows us to translate each executable into
a pattern vector. We then apply pattern recognition techniques to distinguish
between packed and non-packed executables.

Figure 1 shows how our classifier may be used to improve virus detection ac-
curacy with low overhead, compared to a system where all the executables are

1 According to [15] “modified packing tools are being created at a rate of about
10 to 15 per month”

3



Fig. 1. Example of use of our classification system. Fig. 2. PE file format.

directly sent to the universal unpacker. Once a PE executable is received, our
classification system performs a static analysis of the PE file in order to ex-
tract a number of features, as described in Section 3. This feature extraction
process can be performed efficiently. After feature extraction, the obtained
pattern vector representation of the PE executable is sent to the PE file clas-
sifier. If the executable is classified as packed, it will be sent to the universal
unpacker for hidden code extraction, and the hidden code will then be sent
to the anti-virus scanner. On the other hand, if the executable is classified as
non-packed, it will be sent directly to the anti-virus scanner. It is worth noting
that the PE file classifier may erroneously label a non-packed executable as
packed. In this case the universal unpacker will not be able to extract any
hidden code from the received PE file. Nonetheless, this is not critical be-
cause if no hidden code is extracted, the AV scanner will simply scan the
original non-packed code. The only cost paid in this case is the time spent by
the universal unpacker in trying to unpack a non-packed executable. On the
other hand, the PE classifier may in some cases classify a packed executable
as non-packed. In this case, the packed executable will be sent directly to the
anti-virus scanner, which may fail to detect the presence of malicious code
embedded in the packed executable, thus causing a false negative. However,
we will show in Section 4 that our PE file classifier has a very high accuracy
and is therefore able to limit the false negatives due to these cases.

Our classification system is particularly useful in a number of applications.
For example, web-sites hosting free software downloads usually receive many
new executable files per day from software developers who want to make their
applications available (often as either a free-ware or demo version of commer-
cial software). Of course, these web-sites need to guarantee that the software
they distribute do not contain computer viruses. To achieve this goal, before
distribution every application is typically scanned using a number of different
signature-based anti-virus software. However, if the virus is hiding in a packed
executable, there is a good chance that it will not be detected and the web-site
may become a source of infection. On the other hand, using the system pro-
posed in Figure 1 helps in improving virus detection with low computational
overhead.

We performed experiments on 5,498 executables. 2,598 are packed computer

4



viruses collected from the Malfease Project dataset (http://malfease.oarci.
net), 2,231 are benign executables extracted from a clean installation of Win-
dows XP Home plus several common user applications, and 669 are packed
benign executables obtained by manually packing applications selected from
the start menu of Windows XP using 17 different executable packing tools.
We show that our system achieves very high detection accuracy of packed
executables with an average processing time per executable as low as 2.82
seconds.

The remainder of the paper is organized as follows. In Section 2 we present
an overview of the related work. In Section 3 we briefly discuss the Portable
Executable (PE) file format, and describe the features used for classifying PE
executables. We then present and discuss the experimental results in Section 4,
and summarize our work in Section 5.

2 Related Work

In [4], detection of computer viruses is shown to be undecidable both by a-
priori and runtime analysis, and it can be shown that distinguishing between
packed and non-packed executables is also undecidable [14]. Although these
results prove that no algorithm can detect packed executables and computer
viruses with absolute precision, detection may still be performed with high
accuracy, as we discuss in this paper.

In [9], Martignoni et al. propose OmniUnpack, an unpacking tool that moni-
tors the execution of applications in memory and detects attempts of executing
dynamically decrypted code. If such code is detected, OmniUnpack will scan
it using signature-based anti-virus software. If any malicious code is found
the execution of the application will be stopped, otherwise it will continue
until another attempt to execute decrypted code is detected. OmniUnpack is
supposed to be integrated with the operating system kernel, and monitors ev-
ery application executed on the machine. Similarly [14, 6] present executable
unpackers based on dynamic analysis of executables performed in an isolated
environment (e.g. a virtual machine or an emulator). Our approach is differ-
ent in that we do not need to execute an application to detect if it contains
packed executable code. Our classification system extracts a number of fea-
tures from executable files in PE format through static analysis, and can be
used to classify packed executables without need to actually execute them.

To the best of our knowledge, the closest work to ours is Bintropy [8], a tool for
the detection of packed executables based on byte entropy analysis. Bintropy
divides the PE file into blocks of 256 bytes. It then computes the entropy of
each block, the average, and the maximum block entropy. Given a dataset

5



of packed binaries, the authors use simple statistical inference to compute
a 99.99% confidence interval on the value of the average block entropy and
maximum block entropy [8]. Based on the lower bound of these two confidence
intervals, they set two thresholds, one for the value of the average block en-
tropy, and one for the maximum block entropy. During test, if a PE file is found
to have average and maximum entropy above the respective thresholds, it will
be classified as packed. In our work we do not limit the analysis to the PE file
entropy. We introduce and motivate the use of additional features that help
in distinguishing between packed and non-packed executables. Furthermore,
instead of using simple statistical inference for computing confidence intervals
on the entropy values, we apply statistical learning techniques to derive more
accurate classification rules from a labeled dataset of packed and non-packed
executables.

In [7], Kolter et al. use n-gram analysis to distinguish between viruses and
benign exectables. However, they do not distinguish between packed and non-
packed executables. Also the output of their n-gram analysis classifier is not
able to detect to what family of viruses a malicious executable belongs to
(e.g. it cannot distinguish between different kinds of bots, like AgoBot [2]
and SpyBot [3]). Our work is different because we focus on distinguishing
between packed and non-packed executables, and then rely on the unpacker
and signature based anti-virus software for distinguishing between specific
kinds of viruses and benign executables.

3 Feature Extraction

In this section we present a simplified overview of the Portable Executable
format, and the intuition behind the features chosen for translating executable
programs into pattern vectors suitable for classification.

3.1 The Portable Executable format

The Portable Executable (PE) format is a file format used in 32-bit and 64-
bit versions of Microsoft Windows operating systems for executables, object
code, and DLLs [12, 13]. PE files encapsulate the information necessary for the
operating system loader to manage the executable code. This includes dynamic
library references for linking, Application Programming Interface (API) export
and import tables, resource management data, etc. A simplified view of the
PE file format is reported in Figure 2.

The PE header instructs the operating system on how to map the executable

6



in memory. Each code and data section in the PE file is identified by a
name and marked as Readable, Writable or Executable. Usually, code sec-
tions are marked as Readable/Non-Writable/Executable, which tells the op-
erating system that the corresponding memory locations contain executable
code and write operations should be forbidden. On the other hand, data sec-
tions are usually marked as Readable/Writable/Non-Executable, and there-
fore the Program Counter 2 should never point to memory locations in the
range of data sections 3 . For example, most PE executables contain a Read-
able/Executable code section named .text and a Readable/Writable data
section named .data.

During execution, when a process calls a basic operating system function its
Import Address Table (IAT) is used as a lookup table to resolve the address of
the function to jump to. For example, when an applications calls the function
CreateWindowEx, the operating system will lookup the IAT to find the address
of the function in memory, and then execute it to create a new application
window on the screen.

3.2 From PE file to pattern vector

Here we describe the feature extraction process we use to translate a PE file
into a pattern vector. We measure the following nine features:

Number of Standard and Non Standard Sections. The PE file of
non-packed applications usually contains a well defined set of standard sec-
tions. For example, applications compiled using Microsoft Visual C++ usually
contain at least one code section named .text, and two data sections named
.data, and .rsrc (the complete list of “standard” section names is reported
in [13] 4 ). On the other hand, packed executables often contain code and data
sections which do not follow these standard names. For example, the UPX
executable packing tool (http://upx.sourceforge.net) usually creates PE
files that contains two sections named .UPX0 and .UPX1, respectively, and a
section named .rsrc. The two sections .UPX0 and .UPX1 are not standard and
may be used to distinguish an executable packed using UPX from non-packed

2 The Program Counter is the CPU register that points to the next instruction to
be executed.
3 The Non-Executable flag is enforced using the NX bit in most of the 64-bit CPUs.
32-bit x86 processors do not implement the NX bit. In this cases the NX bit can be
emulated by the operating system.
4 The standard section names reported in [13] are related to Microsoft compilers.
However, the same section names are commonly found in PE files generated using
other compilers.

7



exectables. Besides UPX, a number of other packers usually generate PE files
which contain code and data sections having non standard names. Therefore,
counting how many standard and non standard section names are present in
a PE file gives us a clue on whether the executable is packed or not.

Number of Executable Sections. While analyzing the output of exe-
cutable packing tools, we noticed that the PE file of some packed executables
do not carry any executable section. This is obviously anomalous, because if
the operating system does not allow the Program Counter to point to non-
executable sections in memory the program will of course crash. This has be-
come true since the introduction of memory protection techniques in Windows
XP Service Pack 2 [1]. However, packed executable that do not contain any
executable sections may still run correctly in older version of Windows. On the
other hand, the .text section (i.e., the standard code section) of non-packed
executables is always correctly marked as Executable 5 . Therefore counting the
number of executable sections in the PE file helps in distinguishing between
packed and non-packed executables.

Number of Readable/Writable/Executable Sections. Assume we ex-
ecute a packed executable P

′ which hides an encrypted program P . When
executed, P

′ will first activate an unpacking routine in order to decrypt P ,
and then will execute it. The unpacking process entails writing decrypted
code (i.e. P ) in an executable section of the memory image of P

′. There-
fore, the PE file of P

′ needs to include at least one section which is Read-
able/Writable/Executable at the same time. On the other hand, the executable
sections (usually the .text section) in the PE file of non-packed applications
do not need to be writable, and the Writable section flag is not set. There-
fore, counting the number of sections which are writable and executable at the
same time adds a piece of evidence to the conclusion whether the executable
is packed.

Number of Entries in the IAT. The Import Address Table (IAT) of a PE
executable contains the address of the external functions called by the appli-
cation. These external functions are imported from Dynamic Linked Libraries
(DLL). Each imported function has an address in the IAT which is written by
the operating system loader after the application is launched and the PE file
is mapped into memory. Every time the application calls an external function,
the IAT is queried in order to resolve its address in memory.

5 This is true unless a “non standard” compiler is used to generate the PE file.

8



Most non-packed executables import many external functions. For example,
they usually import many functions from the native Windows API, which are
used to read/write form/to files, open new windows on the screen, manage a
network connection, and so on. Therefore, the IAT will usually contain many
entries, one per each imported function. On the other hand, packed executable
often import very few external functions. The main reason is in that the un-
packing routine does not need many external functions. The basic operations
the unpacking routing performs are read and write memory locations in order
to decrypt the code of the packed application on the fly. For example, no win-
dow on the screen or network operation is usually needed. This is reflected in
a small number of entries in the IAT of a packed executable 6 .

PE Header, Code, Data, and File Entropy. The encrypted code of an
application P packed (i.e. hidden) into P

′ is usually stored in a code or data
section of the PE file (we identify a section as a code section if the Executable
section flag is set, otherwise we consider the section to be a data section).
As the code of P is usually somehow encrypted, it will look like “random”,
loosely speaking. On the other hand non encrypted code sections contain well
“structured” information, namely the opcode of executable instructions and
the memory location of the operands. Non-encrypted data sections also contain
somehow structured information. Following this observation, we measure the
byte entropy of the code and data sections in the PE file. If the entropy of
a section is close to 8 bits, which is the maximum byte entropy, the section
likely contains encrypted code.

The code and data sections are not the only places where the executable
packing tool may hide the code of the original application. There are parts
of the PE header dedicated to optional fields that are not necessary for the
correct loading of the program into memory by the operating system. Some
packing tools may therefore hide encrypted code in those unused portions of
the PE header. For this reason we measure the byte entropy of the PE header
as well. Considering that the PE file is quite complex and contains other
such unused spaces (for example, portions of the header of each section), the
encrypted code may be hidden in several other locations [8]. Therefore, we
also measure the entropy of the PE file as a whole to take into account these
cases.

6 The original (packed) application will likely need to perform operations on the
screen and network. Therefore, the unpacking routine will usually overwrite the IAT
in memory on the fly to add the missing IAT entries.

9



4 Experiments

We performed experiments on 5,498 executables in PE format. We collected
2,598 packed viruses 7 from the Malfease Project dataset (http://malfease.
oarci.net), and 2,231 non-packed benign executables 8 collected from a clean
installation of Windows XP Home plus several common user applications.
Also, we generated 669 packed benign executables by applying 17 different
executable packing tools freely available on the Internet to the executables in
the Windows XP start menu. Of the 3,267 packed executables in our collection,
PEiD (http://peid.has.it), (very likely) the most used signature-based de-
tector for packed executables, was able to detect only 2,262 of them, whereas
1,005 remained undetected. This means that PEiD had a false negative rate
of 30.8%. Among the 1,005 undetected packed executables, there were 604
packed viruses and 401 of our “manually” packed benigns.

We developed a PE format analysis tool written in Python, which extracts
the 9 features described in Section 3 and summarized in Table 1.

Feature Range of Values

Number of standard sections integer > 0

Number of non-standard sections integer > 0

Number of Executable sections integer > 0

Number of Readable/Writable/Executable sections integer > 0

Number of entries in the IAT integer > 0, or -1 if the PE file has no IAT

Entropy of the PE header [0,8]

Entropy of the code sections [0,8], or -1 if the PE file has no code section

Entropy of the data sections [0,8], or -1 if the PE file has no data section

Entropy of the entire PE file [0,8]

Table 1
Summary of the features extracted from PE files.

We applied our tool to each of the executables in our collection, therefore
obtaining a labeled dataset with 5,498 entries. We divided our dataset in
two parts: 1) a training dataset containing 2,231 patterns related to the non-
packed benign executable and 2,262 patterns related to the packed executables
detected using PEiD; 2) a test dataset containing 1,005 patterns related to

7 Polyunpack [14], a universal unpacker, was used to confirm that the collected
viruses were actually packed.
8 Strictly speaking, determining whether an executable is packed or not is an unde-
cidable problem [14]. However, we checked the 2,231 benign executable with PEiD
to verify that none of them were packed. Although PEiD suffers from false nega-
tives, given the benign nature of the executables we assume none of them has been
packed with unknown or modified executable packing tools that cannot be detected
using PEiD’s signatures.

10



the packed executables that PEiD was not able to detect. These datasets
and the feature extraction tool we used to generate them are available at
http://roberto.perdisci.googlepages.com/code.

In order to perform experiments with different learning algorithms we used
Weka (http://www.cs.waikato.ac.nz/ml/weka). Table 2 reports the results
obtained with 6 different classifiers, namely

a) Naive Bayes classifier.
b) J48 decision tree (Weka’s implementation of of the well known C4.5).
c) ensemble of unpruned J48 decision trees constructed using Bagging and

the Laplace correction for probability estimates.
d) k-nearest-neighbors classifier (IBk is Weka’s implementation of the kNN al-

gorithm) with k=3 and instance weights equal to the inverse of the distance
from the neighbors.

e) Multi Layer Perceptron (MLP) classifier constructed using 1 input layer
with 9 nodes (one for each feature), 1 hidden layer with 5 nodes, and 1
output layer with 2 nodes (one for each class). All the hidden and output
nodes use a sigmoidal activation function, whereas the input nodes use
a linear activation function. The backpropagation algorithm was used for
training, with 20% of training patterns reserved for validation.

f) Entropy Threshold classifier, which classifies an executable according to a
simple threshold on the value of the PE file entropy. That is, given a PE
file F , if its file entropy is greater than a predetermined threshold F will
be classified as packed, otherwise it will be classified as non-packed.

The first two columns of Table 2 were computed by repeating 10-fold cross-
validation 10 times on the training dataset and then averaging over the ob-
tained 100 results (the standard deviation is reported between parentheses).
For the Entropy Threshold classifier we did not apply cross-validation. We
computed the AUC by simply considering the value of the file entropy as a
score and by computing the Wilcoxon-Mann-Whitney statistic [5]. The accu-
racy (second column) was computed by finding the threshold th that gives
maximum separation between the packed and non-packed classes in the train-
ing dataset. We found that th = 6.707 gives maximum separation, and the
related accuracy reported in the table is therefore the maximum value of the
percentage of correctly classified patterns in the training dataset.

The Test Accuracy (the last column) reports the results on the test dataset,
i.e., on the 1,005 packed executables that were not detected by PEiD. We
first trained each classifier on the training dataset, and then computed the
accuracy on the test dataset. For the Entropy Threshold classifier, we used
the threshold th = 6.707.

Figure 3 shows the ROC curves computed by 10-fold cross-validation. The

11



0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

0.00 0.02 0.04 0.06 0.08 0.10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Naive Bayes
J48
Bagged−J48
IBk
MLP
Entorpy Thr.

False Positive Rate

D
et

ec
tio

n 
R

at
e

Fig. 3. ROC curves. The scale has been adjusted to highlight differences among
classifiers.

Classifier CV AUC % CV Accuracy % Test Accuracy

Naive Bayes 0.9917 (0.0038) 98.42 (0.4913) 97.11

J48 0.9958 (0.0034) 99.57 (0.3032) 97.01

Bagged-J48 0.9994 (0.0010) 99.59 (0.3086) 96.82

IBk 0.9994 (0.0008) 99.43 (0.3486) 95.62

MLP 0.9995 (0.0008) 99.42 (0.3966) 98.91

Entropy Threshold 0.9766 96.57 91.74

Table 2
The first two columns report the average and standard deviation of the AUC and
accuracy computed over 10 rounds of 10-fold cross-validation. The test accuracy
(last column) refers to the percentage of packed executables not detected by PEiD
that were correctly detected by each classifier.

range of false positives and false negatives has been cropped in order to high-
light differences among the classifiers.

As we can see, Bagged-J48, IBk and MLP give nearly perfect classification
results, according to the cross-validation experiments on the training dataset.
A comparison of these three algorithms using paired t-test on the values of
the AUC showed no statistically significant difference among them. On the
other hand, according to the paired t-test the Naive Bays and the J48 classi-
fiers performed significantly worse (although still very well in absolute terms),
compared to Bagged-J48, IBk, and MLP. It easy to see that the Entropy
Threshold classifier has much poorer performance, compared to all of the
other classifiers. We conclude that although the file entropy is a discriminant
feature, using all the nine features described in Section 3 significantly improves

12



the classification of packed executables.

We can consider the Test Accuracy (last column in Table 2) as an estimate of
the generalization ability of our classifiers, compared to the signature-based
approach implemented by PEiD. As we can see, all the classifiers (excluding
the Entropy Threshold classifier) correctly detected more than 95% of the
packed executables that were not detected by PEiD. Even though the Naive
Bayes and J48 algorithms performed slightly worse than Bagged-J48 and IBk
in terms of AUC, they perform better on the test dataset. The best results
were obtained by using the MLP classifier, which performs as well as Bagged-
J48 and IBk in terms of AUC, and gives the best accuracy (reported in bold
in Table 2) on the test dataset.

The average time to extract the features used for classification on a 2GHz Dual
Core AMD Opteron processor was about t = 2.82 seconds per executable. We
believe t can be made even much smaller by developing an optimized feature
extraction tool written in C, instead of using Python. The time needed for the
classification of a pattern vector is in the order of 10−3 seconds, and therefore
negligible compared to t.

5 Conclusion

Executable packing tools are extensively used by computer virus writers to
hide malicious code into packed executables that may not be detected using
traditional signature-based anti-virus software. Universal unpackers may be
used to extract the hidden code from packed executables. After unpacking,
the hidden code can be checked against signatures of known viruses, thus im-
proving the capability of detecting hidden malicious code. However, universal
unpackers introduce a very high computational overhad, because the analysis
of any executable (packed or not) may take from tens of seconds to several
minutes. This means that scanning large collections of executables looking for
virus infections may take several hours or even days.

In this paper we proposed a technique for fast detection of packed executa-
bles. Only the executables that are classified as packed by our classifier will be
analyzed using a universal unpacker for extracting the hidden code, and after-
wards scanned by an anti-virus software, therefore improving virus detection
accuracy while saving a significant amount of processing time. We described
how to extract discriminant features from executable files in Portable Exe-
cutable format, and we showed that our classification system achieves very
high accuracy while keeping the processing time per executable low.

13



Acknowledgments

We would like to thank Dr. Giorgio Giacinto and the anonimous reviewers for
their helpful comments on eralier versions of this paper.

References

[1] S. Andersen. Changes to functionality in Microsoft Windows XP Ser-
vice Pack 2, part 3: Memory protection technologies. http://technet.

microsoft.com/en-us/library/bb457155(d=printer).aspx.
[2] CA. Win32.agobot family. http://www.ca.com/us/securityadvisor/

virusinfo/virus.aspx?id=37776.
[3] CA. Win32.sdbot family. http://ca.com/us/securityadvisor/

virusinfo/virus.aspx?ID=12411.
[4] F. Cohen. Computer viruses: theory and experiments. Computers and

Security, 6(1):22–35, 1987.
[5] C. Cortes and M. Mohri. Confidence intervals for the area under the

roc curve. In NIPS 2004: Advances in Neural Information Processing

Systems, 2004.
[6] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code extractor

for packed executables. In WORM ’07: Proceedings of the 5th ACM

Workshop on Recurring Malcode, 2007.
[7] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious

executables in the wild. Journal of Machine Learning Research, 7:2721–
2744, 2006.

[8] R. Lyda and J. Hamrock. Using entropy analysis to find encrypted and
packed malware. IEEE Security and Privacy, 5(2):40–45, 2007.

[9] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast,
generic, and safe unpacking of malware. In ACSAC ’07: Proceedings of

the 23rd Annual Computer Security Applications Conference on Annual

Computer Security Applications Conference, 2007.
[10] M. Morgenstern and T. Brosch. Runtime packers: The hidden problem?

Presented at Black Hat USA 2006.
[11] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class svm

classifiers to harden payload-based anomaly detection systems. In ICDM

’06: Proceedings of the Sixth International Conference on Data Mining,
2006.

[12] M. Pietrek. An in-depth look into the Win32 Portable Executable file
format. http://msdn.microsoft.com/msdnmag/issues/02/02/PE/.

[13] M. Pietrek. An in-depth look into the Win32 Portable Executable file
format, part 2. http://msdn.microsoft.com/msdnmag/issues/02/03/
PE2/.

14



[14] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack:
Automating the hidden-code extraction of unpack-executing malware. In
ACSAC ’06: Proceedings of the 22nd Annual Computer Security Applica-

tions Conference on Annual Computer Security Applications Conference,
2006.

[15] A. Stepan. Improving proactive detection of packed malware, March
2006. http://www.virusbtn.com/virusbulletin/archive/2006/03/

vb200603-packed.dkb.
[16] C. V. Wright, F. Monrose, and G. M. Masson. On inferring applica-

tion protocol behaviors in encrypted network traffic. Journal of Machine

Learning Research, 7:2745–2769, 2006.

15


